MiningMath

MiningMath

Loading...

With MiningMath there is no complex and slow learning curve!

Sustainable analisys

Estimated reading: 3 minutes 275 views

Socio-environmental qualitative/quantitative integrated performance analysis

Technology has been developed to incorporate social and environmental factors in the mining project optimization, assessing these impacts whilst maximizing its net present value (NPV). The method can quantify socio-environmental aspects, such as dust, noise, avoidance of springs/caves/tribes, carbon emissions, water consumption, and any parameter that could be controlled by its average or sum. These environmental and social aspects can be assessed following internationally recognized standards (ISO 14044).

Figure 1: social and environmental factors.

Minviro in partnership with MiningMath has developed an approach to integrate such quantitative assessment into strategic mining optimization. This enables socio-environmental impacts to be constrained in the mining optimization, and the economic cost of reducing them to be calculated as a consequence. The way to do it is by inserting these variables linked with each block of your model, following these instructions. Considering this methodology, published here, significant reductions in the global warming impact could be achieved with a small economic cost. For example, using an environmental constraint it was possible to reduce 8.1% of ‎CO2 emission whilst achieving 95.9% of the net present value compared to the baseline, as you can see in the image bellow.

Figure 2: Reduction in enviromental impacts.

Several scenarios for mine development, processing setup, energy/water consumption, CAPEX (content in Spanish), OPEX etc. can be evaluated . It is also possible to include geometric constraints in order to restrict a mining area due to legal and site-specific issues that affecs the local population, using this feature. Spatially and temporally explicit socio-environmental risks can be included in mining optimization, providing an opportunity to assess alternative project options or explore a socio-environmental cost benefit analysis. For each aspect considered, decision makers are able to propose a range of possible scenarios and assess the economic cost of constraining these to different levels.

Figure 3: Possible scenarios to assess the economic cost of constraints.

The decision-making board, which previously had access to one or a few scenarios, now has a cloud of possibilities optimized and integrated with the technical and economic aspects of the project, reducing risks and adding sustainable value. The mathematical intelligence behind it is based on modern and well-accepted Data Science and Optimization concepts academically proven. The methodology has been tested in real mining projects with gains in NPV ranging between 15% and 20% on average, where socio-environmental aspects haven’t been added yet.

Figure 4: Performance over time.
CONTENTS

Theory Validation

MiningMath’s results are only possible due to its proprietary Math Program...

Guaranteed Solutions

Multiple, complex constraints increase the likelihood of not finding or not exis...

MiningMath Uniqueness

MiningMath allows mining managers to improve their strategic analysis through ri...

Time Limit

It is possible to indicate a time limit in hours before running a scenario in th...

Must read articles

In order to take the maximum of MiningMath’s Optimization we recommend this fl...

Tutorials

Geometry

Theory

Workflow

Formatting the Block Model

The main focus here is on the requirements. Try to pay attention to the header...

Integrated Workflow, Best Case, Exploratory Analysis, Schedule Optimization, Short-term Planning

By running these scenarios you are already mastering MiningMath and the main use...

Constraints Validation

This is the moment of validating every parameter that should be inserted on the ...

Chat Icon Close Icon