MineríaMatemáticas

MiningMath

Loading...

Obtener el límite superior de NPV mejor que el escenario del mejor caso!

Procedimiento de rotación de acimut

Lectura estimada: 2 minutos 166 puntos de vista

MiningMath admite el uso de modelos de bloques que se han rotado mediante un Azimut rotación.

Example of Azimuth rotation (from North to East) con θ angle.

Rotation steps

This procedure performs a rotation of a point around a specific origin in the \(XY\) plane, while preserving the \(Z\) coordinate. Below are the steps involved, along with the corresponding mathematical formulas.

  1. Azimuth normalization

    Primero, the azimuth value is adjusted to ensure it lies within the range of \(0\) para \(360\) grados. This is done by taking the remainder of the azimuth divided by \(360\)

    \(\text{azimuth} = \text{fmod}(\text{azimuth}, 360.0)\)

    In mathematics, the function \(\text{fmod}\) (floating-point modulus) computes the remainder of the division of two floating-point numbers. If the azimuth value is negative, \(360\) degrees is added to make it positive:

    \(\text{azimuth} = \begin{cases}
    \text{azimuth} + 360.0 & \text{si } \text{azimuth} < 0.0 \\
    \text{azimuth} & \text{de lo contrario}
    \final{cases}\)

  2. Inversion of Rotation Direction

    The adjusted azimuth is then inverted to perform the rotation in the opposite direction:

    \(\text{azimuth} = -\text{azimuth}\)

  3. Conversion from Degrees to Radians

    The azimuth in degrees is converted to radians, as trigonometric functions use radians:

    \(\text{radians} = \frac{\text{azimuth} \times \pi}{180.0}\)

  4. Calculation of New Coordinates

    The new \(x\) y \(y\) coordinates are calculated by applying the rotation in the \(XY\) plane around an origin \((x_0, y_0)\). The formulas used are:

    \(
    p_x = \left( (X - x_0) \times \cos(\text{radians}) + (y - y_0) \times \sin(\text{radians}) \bien) + x_0\)

    \(
    p_y = \left( -(X - x_0) \times \sin(\text{radians}) + (y - y_0) \times \cos(\text{radians}) \bien) + y_0\)

    Dónde \((X, y)\) are the initial coordinates of the point, y \((x_0, y_0)\) are the coordinates of the origin.

  5. Preservation of Z Coordinate

    Él \(z\) coordinate of the original point remains unchanged during the rotation:

    \(z_{\text{final}} = z_{\text{initial}}\)

  6. Final Result

    The result of the procedure is a new point with coordinates \((p_x, p_y, z)\), donde \(p_x\) y \(p_y\) are the new coordinates in the \(XY\) plane after the rotation, y \(z\) is the original coordinate in the \(Z\) axis.

    \(\text{New Point} = \{ p_x, p_y, z \}\)

Comparte este documento

Procedimiento de rotación de acimut

O copiar enlace

CONTENIDO
Icono de chat

Hola, es mima aquí 😇 Hazme cualquier pregunta!